

OneRestore: A Universal Restoration Framework for Composite Degradation

Yu Guo^{1,2,†}, Yuan Gao^{1,†}, Yuxu Lu³, Huilin Zhu^{1,2}, Ryan Wen Liu^{1,*}, Shengfeng He^{2,*} ¹Wuhan University of Technology, ²Singapore Management University, ³The Hong Kong Polytechnic University

PART 1 Introduction

Content

PART 2 OneRestore: A Universal Restoration Framework

PART 3 Experimental Evaluation

PART 4 Conclusion

01 Introduction

- > Adaptive Degradation Recognition
- Effective Multi-degradation Restoration with User Control
- Optimized Recovery for Clarity and Distinction

01 Introduction

DPCOneRestore: A Universal Restoration Framework

02 OneRestore

Composite Degradation Formulation $I(x) = \mathcal{P}_h(\mathcal{P}_{rs}(\mathcal{P}_l(J(x))))$

Low-Light Conditions
$$I_l(x) = \mathcal{P}_l(J(x)) = rac{J(x)}{L(x)}L(x)^\gamma + arepsilon$$

Rain Streaks

$$I_{rs}(x)=\mathcal{P}_{rs}(I_l(x))=I_l(x)+\mathcal{R}$$

Snow Streaks

$$\overline{I_{rs}(x)=\mathcal{P}_{rs}(I_l(x))}=I_l(x)(1-\mathcal{S})+M(x)\mathcal{S}$$

Haze Degradations

$$egin{aligned} I(x) &= \mathcal{P}_h(I_{rs}(x)) = I_{rs}(x)t + A(1-t) \ t &= e^{-eta d(x)} \end{aligned}$$

7

OneRestore Architecture

Our model allows versatile input scene descriptors, ranging from manual text embedding ① to visual attribute-based automatic extractions ②.

- 1 Users input scene descriptions to create text embeddings.
- ② Visual attributes generate embeddings that approximate the best matching text.

Composite Degradation Restoration Loss

We enhance composite degradation restoration, introducing a unique loss for composite degradation that **leverages extra degraded images** as negative samples to reinforce model constraints.

Constraint Function:

$$\mathcal{L}_{ ext{c}}(J, \hat{J}, I, \{I_o\}) = \sum_{k=1}^{K} \xi_k rac{\mathcal{L}_1(V_k(\hat{J}), V_k(\hat{J}))}{\xi_c \mathcal{L}_1(V_k(\hat{J}), V_k(I)) + \sum_{o=1}^{O} \xi_o \mathcal{L}_1(V_k(I_o), V_k(\hat{J}))}$$

03 Experimental Evaluation

	Types	Methods	Venue & Year	$PSNR \uparrow$	SSIM ↑	#Params	PSNR	SSIM
		Input		16.00	0.6008	-	I	
	One-to-One	MIRNet [86]	ECCV2020	25.97	0.8474	31.79M	l+h+s h	l+h+s h
		MPRNet [87]	CVPR2021	25.47	0.8555	$15.74 \mathrm{M}$	1.11.3	
		MIRNetv2 [88]	TPAMI2022	25.37	0.8335	5.86M		
		Restormer [85]	CVPR2022	26.99	0.8646	26.13M	l+h+r	l+h+r
		DGUNet [53]	CVPR2022	26.92	0.8559	17.33M		
		NAFNet [7]	ECCV2022	24.13	0.7964	17.11M		h+c
Synthocic Exporimont		SRUDC [63]	ICCV2023	27.64	0.8600	6.80M	b+c	
Synthesis Experiment		Fourmer [95]	ICML2023	23.44	0.7885	0.55M		
		OKNet [13]	AAAI2024	26.33	0.8605	4.72M		
		AirNet [38]	CVPR2022	23.75	0.8140	8.93M		
	One-to-Many	TransWeather [65]	CVPR2022	23.13	0.7810	21.90M	h+r / / l+h	h+r l+h
		WeatherDiff [54]	TPAMI2023	22.49	0.7985	82.96M		
		PromptIR [56]	NIPS2023	25.90	0.8499	38.45M	l+s l+r	l+s l+r
		WGWSNet [99]	CVPR2023	26.96	0.8626	25.76M		
	One-to-Composite	OneRestore		28.47	0.8784	5.98M	Arnet — Trans	vveather —— vveatherDiff
	one to composite	$OneRestore^{\dagger}$		28.72	0.8821	5.98M	PromptIR We	GWSNet —— OneRestore

03 Experimental Evaluation

12

Ablation for Model Configuration

SDCA	SA	FFN	$PSNR\uparrow$	SSIM \uparrow	Controllability
/		\checkmark	24.81	0.8607	
	\checkmark	\checkmark	27.19	0.8697	
1		\checkmark	27.93	0.8767	\checkmark
\checkmark	\checkmark	\checkmark	28.72	0.8821	\checkmark

Scene Description Cross Attention (SDCA) improves performance and makes the model controllable.

Ablation for Loss Function

Smooth l_1	MS-SSIM	CL	CDRL	$\mathrm{PSNR}\uparrow$	SSIM \uparrow
\checkmark				28.16	0.8633
\checkmark	\checkmark			27.54	0.8708
\checkmark	\checkmark	\checkmark		27.61	0.8723
\checkmark	\checkmark		\checkmark	28.72	0.8821

Composite Degradation Restoration Loss (CDRL) significantly demonstrates better performance compared to standard contrastive loss (CL).

Ablation for Description Embedding Strategy

Models	$PSNR\uparrow$	SSIM \uparrow	Controllability
Classifier	28.19	0.8783	
Visual Embedder	28.24	0.8781	
Visual Embedder [‡]	28.47	0.8784	
Text Embedder	28.72	0.8821	\checkmark

The proposed scene representation strategy enables more accurate identification of degradation, leading to the generation of more natural restoration results.

Contribution of our Work

- We introduce a unified imaging model that simulates multiple degradation types, forming the basis of our Composite Degradation Dataset.
- Our universal framework, using a cross-attention mechanism, enhances image restoration by integrating scene descriptors from text embeddings or visual attributes.
- Additionally, we develop a composite degradation restoration loss to improve the model's ability to distinguish between different degradations.

Code (Github)

OneRestore: A Universal Restoration Framework for Composite Degradation

Yu Guo^{1,2,†}, Yuan Gao^{1,†}, Yuxu Lu³, Huilin Zhu^{1,2}, Ryan Wen Liu^{1,*}, Shengfeng He^{2,*} ¹Wuhan University of Technology, ²Singapore Management University, ³The Hong Kong Polytechnic University